AEAr Agonists
Review Articles
- Pasternak, G. W. (2018). Mu Opioid Pharmacology: 40 Years to the Promised Land. Advances in Pharmacology, 261–291.https://doi.org/10.1016/bs.apha.2017.09.006
- Pasternak, G. W. (2014). Opiate Pharmacology and Relief of Pain. Journal of Clinical Oncology, 32(16), 1655–1661. https://doi.org/10.1200/jco.2013.53.1079
- Pasternak, G. W. (2014b). Opioids and their receptors: Are we there yet? Neuropharmacology, 76, 198–203. https://doi.org/10.1016/j.neuropharm.2013.03.039
- Pasternak, G. W. (2013). Mu Opioids and Their Receptors: Evolution of a Concept. Pharmacological Reviews, 65(4), 1257–1317. https://doi.org/10.1124/pr.112.007138
Scientific Articles
- Grinnell, S. G. (2014). Pharmacologic Characterization in the Rat of a Potent Analgesic Lacking Respiratory Depression, IBNtxA. Journal of Pharmacology and Experimental Therapeutics, 350(3), 710–718. https://doi.org/10.1124/jpet.114.213199
- Lu, Z. (2015). Mediation of opioid analgesia by a truncated 6-transmembrane GPCR. Journal of Clinical Investigation, 125(7), 2626–2630. https://doi.org/10.1172/jci81070
- Lu, Z. (2018). Truncated μ-Opioid Receptors With 6 Transmembrane Domains Are Essential for Opioid Analgesia. Anesthesia & Analgesia, 126(3), 1050–1057. https://doi.org/10.1213/ane.0000000000002538
- Majumdar, S. (2011). Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects. Proceedings of the National Academy of Sciences, 108(49), 19778–19783.https://doi.org/10.1073/pnas.1115231108
- Majumdar, S., & Pasternak, A. R. (2011). Generation of novel radiolabeled opiates through site-selective iodination. Bioorganic & Medicinal Chemistry Letters, 21(13), 4001–4004. https://doi.org/10.1016/j.bmcl.2011.05.008
- Majumdar, S., & Pasternak, A. R. (2012). Synthesis and Evaluation of Aryl-Naloxamide Opiate Analgesics Targeting Truncated Exon 11-Associated μ Opioid Receptor (MOR-1) Splice Variants. Journal of Medicinal Chemistry, 55(14), 6352–6362. https://doi.org/10.1021/jm300305c
- Marrone, G. F. (2015). Radioligand Binding Assay for an Exon 11-Associated Mu Opioid Receptor Target. Methods in Molecular Biology, 241–249. https://doi.org/10.1007/978-1-4939-2914-6_16
- Marrone, G. F. (2016a). Tetrapeptide Endomorphin Analogs Require Both Full Length and Truncated Splice Variants of the Mu Opioid Receptor Gene Oprm1 for Analgesia. ACS Chemical Neuroscience, 7(12), 1717–1727. https://doi.org/10.1021/acschemneuro.6b00240
- Marrone, G. F. (2016b). Truncated mu opioid GPCR variant involvement in opioid-dependent and opioid-independent pain modulatory systems within the CNS. Proceedings of the National Academy of Sciences, 113(13), 3663–3668. https://doi.org/10.1073/pnas.1523894113
- Wieskopf, J. S. (2014). Broad-spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene. Pain, 155(10), 2063–2070.https://doi.org/10.1016/j.pain.2014.07.014
MOR Partial Agonist / DOR Antagonists
- Váradi, A., et al. (2016). Mitragynine /Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. Journal of Medicinal Chemistry, 59(18), 8381–8397. https://doi.org/10.1021/acs.jmedchem.6b00748
- Wilson, L. L. et al. (2021). Kratom Alkaloids, Natural and Semi-Synthetic, Show Less Physical Dependence and Ameliorate Opioid Withdrawal. Cellular and Molecular Neurobiology, 992–1001. https://doi.org/10.1007/s10571-020-01034-7
- Kruegel, A. C. et al. (2019). 7-Hydroxymitragynine Is an Active Metabolite of Mitragynine and a Key Mediator of Its Analgesic Effects. ACS Central Science, 5(6), 992–1001. https://doi.org/10.1021/acscentsci.9b00141
Irreversible MOR Antagonists
- Dong, J. (2014a). SuFEx-Based Synthesis of Polysulfates. Angewandte Chemie International Edition, 53(36), 9466–9470. https://doi.org/10.1002/anie.201403758
- Dong, J. (2014b). Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angewandte Chemie International Edition, 53(36), 9430–9448. https://doi.org/10.1002/anie.201309399
- Katritch, V. (2011). Ligand-Guided Receptor Optimization. Methods in Molecular Biology, 189–205. https://doi.org/10.1007/978-1-61779-588-6_8
- Leen, J. L. S. (2019). Carfentanil: a narrative review of its pharmacology and public health concerns. Canadian Journal of Anesthesia/Journal Canadien d’anesthésie, 66(4), 414–421. https://doi.org/10.1007/s12630-019-01294-y
- Liu, Z. (2018). SuFEx Click Chemistry Enabled Late-Stage Drug Functionalization. Journal of the American Chemical Society, 140(8), 2919–2925. https://doi.org/10.1021/jacs.7b12788
- Moss, R. B. (2019). Higher doses of naloxone are needed in the synthetic opioid era. Substance Abuse Treatment, Prevention, and Policy, 14(1), x. https://doi.org/10.1186/s13011-019-0195-4
- Rzasa Lynn, R. (2017). Naloxone dosage for opioid reversal: current evidence and clinical implications. Therapeutic Advances in Drug Safety, 9(1), 63–88. https://doi.org/10.1177/2042098617744161
- Suffoletto, B. (2020). Risk and protective factors for repeated overdose after opioid overdose survival. Drug and Alcohol Dependence, 209, 107890. https://doi.org/10.1016/j.drugalcdep.2020.107890
- Sutter, M. E. (2016). Fatal Fentanyl: One Pill Can Kill. Academic Emergency Medicine, 24(1), 106–113. https://doi.org/10.1111/acem.13034
- Weiner, S. G. (2020). One-Year Mortality of Patients After Emergency Department Treatment for Nonfatal Opioid Overdose. Annals of Emergency Medicine, 75(1), 13–17. https://doi.org/10.1016/j.annemergmed.2019.04.020
Sigma Antagonist / DAT Inhibitor
- Katz, J. L., Hiranita, T., Hong, W. C., Job, M. O., & McCurdy, C. R. (2017). A role for sigma receptors in stimulant self-administration and addiction. Handbook of Experimental Pharmacology, 177–218. https://doi.org/10.1007/978-3-319-55765-9_8
- Matsumoto, R. R., Nguyen, L., Kaushal, N., & Robson, M. J. (2014). Sigma (σ) receptors as potential therapeutic targets to mitigate psychostimulant effects. Advances in Pharmacology, 69, 323–386. https://doi.org/10.1016/B978-0-12-420118-7.00009-3
- Hiranita, T., Soto, P. L., Kohut, S. J., Kopajtic, T., Cao, J., Newman, A. H., Tanda, G., & Katz, J. L. (2011). Decreases in cocaine self-administration with dual inhibition of the dopamine transporter and σ receptors. Journal of Pharmacology and Experimental Therapeutics, 339(2), 662–677. https://doi.org/10.1124/jpet.111.185025
- Martin-Fardon, R., Maurice, T., Aujla, H., Bowen, W. D., & Weiss, F. (2007). Differential effects of sigma1 receptor blockade on self-administration and conditioned reinstatement motivated by cocaine vs natural reward. Neuropsychopharmacology, 32(9), 1967–1973. https://doi.org/10.1038/sj.npp.1301323
- Katz, J. L., Hiranita, T., Kopajtic, T. A., Rice, K. C., Mesangeau, C., Narayanan, S., Abdelazeem, A. H., & McCurdy, C. R. (2016). Blockade of cocaine or σ receptor agonist self-administration by subtype-selective σ receptor antagonists. Journal of Pharmacology and Experimental Therapeutics, 358(1), 109–124. https://doi.org/10.1124/jpet.116.232728
- Ritz, M. C., Lamb, R. J., Goldberg, S. R., & Kuhar, M. J. (1987). Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science, 237(4819), 1219–1223. https://doi.org/10.1126/science.2820058
- Gilmore, D. L., Liu, Y., & Matsumoto, R. R. (2004). Review of the pharmacological and clinical profile of rimcazole. CNS Drug Reviews, 10(1), 1–22. https://doi.org/10.1111/j.1527-3458.2004.tb00001.x
- Katz, J. L., Libby, T. A., Kopajtic, T., Husbands, S. M., & Newman, A. H. (2003). Behavioral effects of rimcazole analogues alone and in combination with cocaine. European Journal of Pharmacology, 468(2), 109–119. https://doi.org/10.1016/s0014-2999(03)01638-8
- Pontieri, F. E., Tanda, G., & Di Chiara, G. (1995). Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the ‘shell’ as compared with the ‘core’ of the rat nucleus accumbens. Proceedings of the National Academy of Sciences, 92(26), 12304–12308. https://doi.org/10.1073/pnas.92.26.12304
- Mereu, M., et al. (2012). Rimcazole attenuates the cocaine-induced stimulation of mesolimbic dopamine related to its abuse and dependence. FASEB Journal, 26, 659.4. [Unpublished Meeting Abstract].
- Loland, C. J., Desai, R. I., Zou, M. F., Cao, J., Grundt, P., Gerstbrein, K., Sitte, H. H., Newman, A. H., Katz, J. L., & Gether, U. (2008). Relationship between conformational changes in the dopamine transporter and cocaine-like subjective effects of uptake inhibitors. Molecular Pharmacology, 73(3), 813–823. https://doi.org/10.1124/mol.107.039800
- Katz, J. L., Su, T. P., Hiranita, T., Hayashi, T., Tanda, G., Kopajtic, T., & Tsai, S. Y. (2011). A role for sigma receptors in stimulant self-administration and addiction. Pharmaceuticals (Basel), 4(6), 880–914. https://doi.org/10.3390/ph4060880
- Hiranita, T., Kohut, S. J., Soto, P. L., Tanda, G., Kopajtic, T. A., & Katz, J. L. (2014). Preclinical efficacy of N-substituted benztropine analogs as antagonists of methamphetamine self-administration in rats. Journal of Pharmacology and Experimental Therapeutics, 348(1), 174–191. https://doi.org/10.1124/jpet.113.208264
- Xu, Y. T., Kaushal, N., Shaikh, J., Wilson, L. L., Mésangeau, C., McCurdy, C. R., & Matsumoto, R. R. (2010). A novel substituted piperazine, CM156, attenuates the stimulant and toxic effects of cocaine in mice. Journal of Pharmacology and Experimental Therapeutics, 333(2), 491–500. https://doi.org/10.1124/jpet.109.161398